GOVERNMENT DEGREE COLLEGE, NANDIKOTKUR

DEPARTMENT OF CHEMISTRY GENERAL AND INORGANIC CHEMISTRY SEM II PAPER -1

Unit I: Atomic Structure and Periodic Table

Short Questions:

- 1.State Bohr's theory of the hydrogen atom and its limitations.
- 2.Explain the dual nature of electrons.
- 3. What is Heisenberg's uncertainty principle?
- 4. Write the Schrödinger equation and explain its significance.
- 5.Define Pauli's exclusion principle.
- 6.State Hund's rule.
- 7. What is the Aufbau principle and how does it determine the electronic configuration of atoms?
- 8. What are radial and angular wave functions?
- 9. Explain periodic law and its significance in the periodic table.
- 10. What are the horizontal, vertical, and diagonal relationships in the periodic table?

Long Questions:

- 1.Discuss the electronic configuration of elements using Bohr's theory, and the significance of wave functions.
- 2.Explain the periodic trends in atomic radii, ionization potential, electron affinity, and electronegativity.
- 3.Describe the IUPAC nomenclature and group number classification in the periodic table.
- 4. Discuss the concept of isoelectronic species and the inert-pair effect.

5. Compare the Pauling, Mulliken-Jaffe, and Allred-Rochow definitions of electronegativity.

Unit 2: Ionic Bond

Short Questions:

- 1. What are the general properties of ionic compounds?
- 2.Define lattice energy and state the factors affecting it.
- 3.Explain the Born-Haber cycle with respect to ionic compounds.
- 4. What factors affect the thermal stability and solubility of ionic compounds?
- 5. Define covalent character in ionic compounds and explain Fajan's rules.
- 6. What is the significance of ionization potential, electron affinity, and electronegativity in ionic bond formation?

Long Questions:

- 1.Explain the formation of ionic compounds with the help of ionization potential, electron affinity, and electronegativity.
- 2.Discuss the Born-Haber cycle in detail and its application in determining the enthalpy of formation of ionic compounds.
- 3.Describe the polarization of ions and its effects on the physical properties (such as melting point and solubility) of ionic compounds.
- 4.Explain the stability of ionic compounds in terms of lattice energy and Born-Haber cycle.

Unit 3: The Covalent Bond

Short Questions:

- 1. What is Valence Bond theory and how does it explain the formation of covalent bonds?
- 2.Describe hybridization and its application to molecules like BeCl2, BF3, CH4, and PCl5.

- 3. What is the VSEPR model and how does it predict the geometry of molecules?
- 4. Explain the effect of electronegativity on bond formation.
- 5. What is Molecular Orbital theory? How does LCAO help in constructing M.O. diagrams?
- 6.Illustrate the M.O. diagram for diatomic molecules like N2, O2, CO, and NO.

Long Questions:

- 1.Discuss the Valence Bond theory and explain the hybridization in molecules such as BeCl2, BF3, and CH4.
- 2.Explain the VSEPR theory and predict the shapes of molecules like NH3, H2O, SF6, XeF4, and XeF6.
- 3.Discuss the molecular orbital theory and construct the M.O. diagram for N2, O2, CO, and NO molecules, including bond order and magnetic properties.

Unit 4: Metallic and Weak Bonds

Short Questions:

- **1.**What is a metallic bond and how does it explain the properties of metals?
- 2.Describe the free electron theory and its limitations.
- 3. What is the band theory of metals and how does it classify conductors, semiconductors, and insulators?
- 4. What is hydrogen bonding? Differentiate between intra- and intermolecular hydrogen bonds.
- 5. What are van der Waals forces? How do they influence the properties of molecules?

Long Questions:

- 1.Explain the formation of metallic bonds and discuss their properties such as electrical conductivity, malleability, and ductility.
- 2.Describe the band theory of metals and explain how it accounts for the electrical properties of metals, semiconductors, and insulators.

- 3.Discuss hydrogen bonding and its effects on the physical properties of substances like water, alcohol, and acetic acid.
- 4.Explain van der Waals forces and their importance in the physical properties of molecular compounds.

Unit 5: Acids and Bases

Short Questions:

- 1. Explain the Arrhenius theory of acids and bases.
- 2.State Bronsted-Lowry theory of acids and bases.
- 3. What is the Lewis theory of acids and bases?
- 4. What are non-aqueous solvents? Give examples of protonic and aprotic solvents.
- 5. What is pH and how is it related to pKa and pKs?
- 6. What is salt hydrolysis? Provide an example.
- 7. What is Pearson's concept of acids and bases?

Long Questions:

- 1 Compare the Arrhenius, Bronsted-Lowry, and Lewis theories of acids and bases.
- 2.Discuss the role of non-aqueous solvents in acid-base reactions, particularly liquid ammonia.
- 3.Define the concept of pH, pKa, and pKs, and explain how they are calculated and used in acid-base equilibria.
- 4.Discuss the HSAB (Hard and Soft Acids and Bases) principle and its significance in chemical bonding, particularly in hard-hard and soft-soft interactions.
- 5.Explain the process of salt hydrolysis with examples, and discuss the types of salts formed during neutralization reactions.